Вентильные разрядники: принцип действия и характеристики. Разрядники: назначение, конструкция, принцип действия

Даже представить страшно загородную собственность без электроприборов. Пусть и в ночном кошмаре не снятся лучина или коромысло с корытом. Да здравствуют стиральные машины, насосы, светильники, водонагреватели и еще масса полезных изобретений, участвующих в формировании цивилизованных условий! Однако для стабильной работы оборудования оды слагать недостаточно. Нужно позаботиться о том, чтобы трудолюбивые «железные помощники» получали питание требующихся им параметров, а способ доставки энергии был надежным и предельно безопасным. Вот для этого и нужен ограничитель перенапряжения – компактный потомок устаревших разрядников.

Служебные обязанности старых и новых разрядников

Теплую симпатию Тютчева к майским грозам вряд ли смогут разделить владельцы электрооборудования. Угодивший в воздушную электролинию меткий грозовой разряд создаст в ней перенапряжение, значение которого достигает порой десятков кВ. Даже если дело не дойдет до десятков, а обойдется единицами, приборам может быть нанесен серьезный ущерб. Ведь преобладающее количество бытовых агрегатов с электронной начинкой устойчиво лишь к 1,5 кВ.

Молниеносно разбегаясь по проводке крутые волны перенапряжения способны вызвать пробой, могут перегреть изоляцию до стадии возгорания. И вовсе необязательно, чтобы разрушительная грозовая «стрела» попала в сеть рядом со строением. За пару микросекунд она преодолевает километровые расстояния. От предсказуемых последствий жильцов многоэтажек обязаны защитить электрики управляющей организации. А вот частники смогут предъявить претензии только Илье Громовержцу.

Это не единственная причина, с целью исключения которой нужна защита от перенапряжения. Аналогичную угрозу представляют:

  • коммутационные скачки, возникающие на подстанции вследствие отключающих/подключающих манипуляций с мощными потребителями;
  • броски перенапряжения, распространяемые другим оборудованием;
  • электростатические разряды, которые периодически появляются между работающими рядом устройствами.

Для того чтобы все перечисленные обстоятельства не влияли ни на работу электротехники, ни на целостность ее изоляции, были изобретены разрядники.

Функция разрядников заключалась в поглощении излишков энергии с последующим сбросом их вместе с выделившимся теплом в почву через . В списке компонентов разрядника значатся только два электрода и дугогасительный элемент. Один из электродов крепился к защищаемому объекту, второй к заземляющему контуру. Т.е. одной «рукой» разрядник ловил перенапряжение, второй – выводил его за пределы. Дугогаситель снимал возникшую в это время ионизацию, чтобы вернуть разрядник в обычное рабочее русло.

Между электродами разрядника нужно было установить четкое расстояние, именуемое искровым промежутком. Чем больше был данный интервал, тем мощнее действовала разрядная система. В результате сооружалось нечто весьма громоздкое и не всегда эффективное, потому что устройство могло внезапно ограничить поток, не успев вернуться в нормальный рабочий режим перед очередным всплеском. Потом были эпопеи с внедрением вентильных, воздушных, газовых и других типов разрядников. Каждый из них мог похвастаться технологическими плюсами, но не был полностью избавлен от недостатков.

Меньше всего технологических минусов у нового поколения разрядников – ограничителей. Ранее они были представлены блокированными устройствами, которые после повреждения приходилось полностью менять. Теперь их выпускают в модульных вариантах, невероятно удобных для защиты электропроводки загородной частной собственности.

Конструкция и специфика модульных ограничителей

Ограничители, применяемые для гашения импульсного перенапряжения, представляют собой компактные аппараты со сменными модульными элементами. Устанавливают приборы в главных и второстепенных распределительных щитках.

Обратите внимание. Использование ограничителей будет иметь смысл только при наличии системы заземления, которая требуется для вывода тепловой энергии от погашенной электромагнитной дуги.

Главный рабочий орган ограничителя – варистор. Это реостат, набранный из плотно состыкованных варисторных таблеток. Делают таблетки из смеси оксида цинка с оксидами висмута, кобальта и других металлов. Преимущество данного органа заключается в нелинейном вольт-амперном «поведении». Т.е. сопротивление устройства уменьшается с увеличением силы тока, благодаря чему:

  • прибор свободно пропускает сверхтоки и компактно гасит их без длиннющего искрового промежутка;
  • срабатывает в предельно краткий срок;
  • почти моментально возвращается к исходному изоляционному состоянию в полной готовности «принять на грудь» очередной импульсный поток.

Варистор расположен в модульной вставке, которую после выхода из строя функциональной начинки можно без мельчайших проблем заменить. Модульные устройства выпускают в широком диапазоне пропускной токовой способности, т.к. ограничители призваны осуществлятьзащиту от разных по мощности скачков напряжения.

Обратите внимание, что в случае применения комплектных ограничителей от одного производителя (например, с маркой ETITEC) допустима их параллельная установка, если требуется увеличить токовую способность. Однако желательно изначально подбирать аппарат с требующимися характеристиками.

Ограничитель в сеть устанавливается навечно. Точнее, на весь срок службы защищаемого им участка проводки. Периодически менять нужно будет лишь сменную вставку, габариты которой рассчитаны на возможность подключения только к прибору с конкретной пропускной токовой способностью. Короче, вставка с иными токовыми характеристиками банально не влезет в «гнездо».

Работа и сигнализация о повреждении

Пока по токоведущим жилам проводки течет ток стандартного рабочего значения, варисторный ограничитель безоговорочно пропускает поток. Напряжение на клеммах его главного рабочего органа равнозначно напряжению в сети. Как только клеммы прибора зафиксируют аномалию, аппарат в считанные наносекунды приступает к обязанностям. А если возникнет напряжение, равное по значению напряжению воспламенения прибора, работу ограничителя прервет термический предохранитель.

По задумке разработчиков «жизненный цикл» ограничителей равен 200 тысячам часов. Однако сократить его могут всплески перенапряжения, значение которых ощутимо превышает номинальные величины. Они способны повредить варисторный орган и сжечь предохранитель, в результате чего устройствопросто вообще не сможет осуществлять защиту от перенапряжения. Естественно, «на ощупь» получить информацию о выходе прибора из строя невозможно. Для этого в сменном модуле заботливые производители предусмотрели сигнальный элемент – контрольное окошко.

Визуальная сигнализация зависит от предпочтений изготовителя. Это может быть затемнение контрольного окна или обнаруженный там же яркий красный свет, как у продукции ETITEC. Кстати в ассортименте упомянутой фирмы есть ограничители со звуковым оповещением. В инструкциях обычно подробно описано, по каким признакам нужно определять предстоящую замену вкладыша.

Обратите внимание, что модульность ограничителей в приоритете не только из-за оперативной замены поврежденного элемента, но и из-за возможности получить верные показания при контрольном измерении сопротивления проводки. Достаточно удалить вкладыши из модульных ограничителей, и на исследуемые значения ничто не будет влиять. С блокированными аппаратами измерения проводить бесполезно, достоверных результатов не будет.

Классификация ограничителей и правила монтажа

Защиту объекта от импульсных напастей сооружают по традиционным правилам селективности. Т.е. на вводе устанавливают наиболее мощный прибор, затем ограничитель с меньшей пропускной токовой способностью, далее – еще меньше и т.д. Для загородных строений вполне приемлем двухступенчатый формат защиты, тратиться на более изощренный вариант не к чему.

Чтобы не купить ограничитель с абсолютно ненужными характеристиками, выясним, по каким принципам классифицирует свой товар глубокоуважаемая нами компания ETITEC:

  • Группа А - ограничители, предназначенные для защиты объекта от сверхтоков, вызванных прямым попаданием грозового разряда в сеть или попаданием в объект, расположенный поблизости от воздушной ЛЭП. Без потери работоспособности они смогут вывести в землю импульсы не более 6кВ. Рабочее сопротивление данных устройств не превышает 10 Ом. Устанавливаются снаружи, чаще всего крепятся в точке перехода воздушной линии в кабельное продолжение. Рекомендовано располагать в зоне заземления нулевого защитного проводника PE или его собрата PEN, по совместительству выполняющего функции нулевого защитного и нулевого рабочего проводников.
  • Группа В – ограничители, защищающие от импульсных всплесков в пределах 4 кВ. Устанавливаются они на вводе в строение, если наружное ограничивающее устройство уже есть. Эта группа чаще всего используются в качестве первой ступени защиты частного дома, т.к. предполагается, что предыдущий вариант обязана поставить обслуживающая ЛЭП компания.
  • Группа С – ограничители, сбрасывающие в заземление все, что пропустила защита В, но не более 2,5 кВ. Причем и применяются они преимущественно в паре, особенно, если сооружается двухступенчатая система. Если в двух ступенях ограничения не было необходимости, то приборы группы С справляются с задачами первой защитной преграды. Монтируются в местах распределения электропроводки, в щитках.
  • Группа D – ограничители, предназначенные для защиты потребителей, особо чувствительных к коротким сверхтокам. Оберегают они оборудование, чья устойчивость изоляции не превышает 1,5 кВ. Обойтись без них можно, если нет техники с электронной начинкой. Однако если между устройством С и защищаемым оборудованием больше 15 м, D очень даже пригодится. Установка в сеть ограничителей D допустима только при наличии более высоких степеней защиты. Чувствительные устройства без затруднений выведет из строя малейшее импульсное колебание.

Согласно описанному ранжиру производится селективная установка ограничителей. В преобладающем количестве случаев используется схема B – C, отлично справляющаяся с гашением и отводом наружу электромагнитного негатива в диапазоне 1,5- 2,5 кВ. Если имеются причины для увеличения количества ступеней, то можно начать сооружение защиты с прибора группы А и завершить устройством D.

Обратите внимание. Между ограничителями В и С марки ETITEC расстояние должно быть 10м и более, чтобы на подступах ко второй ступени защиты перенапряжение успело достичь порогового значения. При отсутствии возможности расположить приборы согласно правилам, можно поставить рядом в щиток, но между аппаратами разместить индукционную катушку от того же производителя. Между С и D катушки не надо, но желательно создать между ними интервал в 5 м.

Жаль, что латинскими литерами обозначаются не все ограничители, но принцип классификации у всех производителей приблизительно одинаков. Аналогична схема установки и использования ограничителей, защищающих от скачков напряжения в электросети, равнозначны правила их подбора. Как ориентироваться без буквенных подсказок?

Ориентиры подбора ограничителей

Перед покупкой надо изучить технический паспорт аппарата, в котором указаны:

  • значение максимального рабочего напряжения, при котором устройство способно длительное время работать без отвода излишка энергии в систему заземления;
  • номинальное напряжение – характеристика, указывающая на то, какое перенапряжение при пуске оборудования может действовать на устройство целых 10 сек., не призывая его к «должностным» обязанностям;
  • величина номинального разрядного тока, согласно которой производится классификация, идентичная вышеуказанному варианту.
  • токовая пропускная способность, обозначающая предел снижения сопротивления ограничителя. Проще говоря, какой величины перенапряжение устройство сможет обрабатывать и сбрасывать без собственной поломки;
  • устойчивость к медленно возрастающему напряжению, которая означает способность устройства пропускать аномальный ток без разрушительных последствий;
  • предельный ток разряда, который может «обработать» устройство;
  • устойчивость к «коротышам», успевшим вывести прибор из строя, но не создавшим условий для взрыва оболочки…

В техпаспорте найдется еще ряд значений, полученных расчетным или экспериментальным путем. Изучать их в полном объеме необязательно, большинство пропечатанных параметров предназначено для рабочих испытаний и для настройки промышленных систем.

Резюмируем полученную информацию

Итак, уверенно направляемся в магазин с целью приобретения весьма полезных приборов защиты и учитываем что:

  • для обеспечения автономного строения, не имеющего наружной грозовой защиты, потребуется трехступенчатое сооружение А – В – С, действие которой будет последовательно ограничивать импульсные волны 6 – 4 – 2,5 кВ;
  • при расстоянии от ограничителя С (2,5 кВ) до приемника энергии больше 10ти метров нужен будет еще и прибор D (1,5кВ);
  • для объекта с существующей защитой от атмосферных и сетевых перенапряжений нужен только тандем В – С (4 - 2,5 кВ).

Хочется верить, что наши советы помогут грамотно выбрать приборы для защиты от всего спектра перенапряжений. А вот установку их желательно поручить «бывалым» электрикам. Без опыта лучше не браться за крайне ответственное дело.

Спецификой проблемы грозозащиты на ВЛЗ (воздушных линиях с защищенными проводами) является то, что если провода в изоляции ничем не защищать, то при грозовом перенапряжении и перекрытии изолятора образуется дуга, которой просто некуда перемещаться по проводу.

Соответственно она горит в месте пробоя изоляции до срабатывания защиты на подстанции и аварийного отключения ВЛ. Так как защита в этом случае срабатывает не сразу, то могут произойти следующие последствия:

  • повреждение изоляции СИП-3
  • разрушение самого изолятора на ВЛЗ
  • пережог и обрыв провода

Именно пережог провода является главным условием необходимости применения для СИП-3 устройств грозозащиты.

Дугозащитные рога

Первоначально широко применялась система дугозащитных "рогов". Когда дуга и однофазное замыкание искусственно переводились в двухфазное КЗ с гарантированным отключением ЛЭП.

Однако эта система имеет существенные недостатки:

  • она не защищает изоляцию от перенапряжения
  • не предотвращает отключения линии, а наоборот способствует этому

А между тем для линий с изолированной нейтралью однофазное замыкание не является аварийным режимом, требующим немедленного отключения.

Кроме того, "рога" периодически обгорают и требуют замены.

А при прохождении ВЛЗ через посадки и лесные просеки возможны межфазные замыкания из-за касания веток.

Поэтому для защиты ВЛЗ среднего напряжения 6-20кв от грозовых перенапряжений стали применять специальные устройства - длинно искровые разрядники петлевого типа РДИП.

Длинно искровые разрядники

Эти устройства должны устанавливаться на всем протяжении ВЛ, на подходах к подстанции и кабельным вставкам. Это позволяет исключить перекрытие изоляции на линии и свести на нет негативные последствия индуктированных грозовых перенапряжений.

При этом не должно происходить:

  • аварийных отключений ЛЭП
  • разрушение изоляторов
  • пережог провода
  • плюс обеспечивается защита подстанционного оборудования и кабельных вставок

Длинно искровые разрядники РДИП или PDR-10 (фирмы Niled) должны быть установлены на защищенном участке трассы по одному на каждую опору с циклическим чередованием фаз.

То есть:

  • на опоре №1 подключаем разрядник на фА
  • на опоре №2 на фВ
  • на опоре №3 на фС

Ставить на соседние фазы промежуточной опоры со штыревой изоляцией одновременно два разрядника РДИП не совсем желательно, даже если позволяет место. В противном случае однофазное замыкание может перейти в двухфазное с последующим аварийным отключением ВЛ.

Монтаж РДИП на ВЛ-6-10кв со штыревыми изоляторами

Закрепляете разрядник хомутом на штыре изолятора.

Чтобы выставить зазор между проводом СИП-3 и разрядником, разрешается вручную изменять изгиб петли. Далее монтируется универсальный или прокусывающий зажим. Он ставится с внутренней стороны петли.

Регулируется воздушный зазор. Его величина для ВЛЗ-6-10кв:

  • 40мм от провода СИП
  • 20мм от универсального зажима

Установка на натяжную гирлянду

Первым делом ослабляете крепление плеч разрядника. После чего РДИП отделяется от крепежа.

Кронштейн разворачивается на 180 градусов и одевается только на одно из плеч.

Делается это для того, чтобы петлю разрядники можно было продеть через провод СИП не разрывая его. Теперь оба плеча можно вновь затянуть.

Закрепляете кронштейн крепления на верхней серьге гирлянды и выставляете воздушный зазор. Он замеряется между центральным электродом на разряднике и ближайшей металлической частью арматуры.

Если нет возможности закрепить РДИП за гирлянду, то используют подходящие крепления траверс и укосов.

Разновидности крепежа и расстояния для петлевого разрядника на ВЛЗ-6-10кв:

Угловая анкерная опора Повышенная угловая промежуточная Угловая промежуточная Двухцепная угловая промежуточная Двухцепная анкерная Угловая анкерная Одноцепная угловая промежуточная

Недостатки РДИП

Однако длительный период эксплуатации показывает, что такого типа защита не всегда полностью выполняет свои функции. На некоторых ВЛ число однофазных КЗ может даже увеличиться.

Кроме того, испытания подтверждают что не всегда РДИП может защитить изоляцию на соседних опорах. То есть на последующих двух, где он не установлен по этой фазе. Здесь многое будет зависеть от марки изолятора, расстояния между опорами и уровня перенапряжения.

Даже изоляторы ШФ-20 может перекрыть.

Вот наглядное испытание в лаборатории:

Разрядники РМК-20, MCR

Поэтому в последнее время наряду с устройствами петлевого типа, стали широко применяться разрядники с мультикамерной системой РМК-20 или MCR (Niled).

Он более компактен и удобен в монтаже. По области применения и схеме установки MCR (РМК-20) аналогичен традиционным длинно-искровым. То есть также устанавливается на каждой опоре с чередованием фаз.

Из чего же состоит РМК-20:




Он также может дополняться индикатором срабатывания.

Конструкция кронштейна универсальна и позволяет крепить РМК-20 на промежуточных и анкерных опорах СВ-105,110,164 с несколькими типами изоляции.

Подготовка к монтажу

Перед установкой обязательно произведите внешний осмотр. Разрядный элемент должен быть без трещин, порезов, механических вмятин и т.д. Попробуйте прилагая легкое усилие согнуть элемент. Он должен быть достаточно упругим и сразу же восстанавливать свою изначальную форму.

Если в комплекте идут индикаторы срабатывания, то проверьте целостность стеклянной непрозрачной колбы.

Изначально разрядник поставляется в разобранном виде. Поэтому его необходимо собрать в единую конструкцию. Болтом с гайками и шайбами соединяете кронштейн и мультикамерную систему.

Монтаж РМК-20 на штыревой изолятор

Разрядник своим креплением устанавливается непосредственно на штырь под изолятором. Причем кронштейн изначально должен быть слегка ослаблен для возможности регулировки его положения.

Угол смещения разрядника относительно оси провода должен находиться в пределах 30 градусов.

Также регулируется расстояние от кронштейна до нижней юбки изолятора - 30мм. Делать это лучше всего с помощью шаблона.

После регулировки болты кронштейна можно затягивать. Усилие затяжки 25Нм.

Между проводом СИП-3 и наконечником РМК-20 должен быть воздушный промежуток фиксированной величины. Для этого на провод монтируется универсальный зажим.

Для ВЛЗ с проводами СИП-3 зажим имеет прокалывающий шип.

Важное замечание: если провод фиксируется на изоляторе спиральной вязкой, то шип должен проходить между ее витками, не повреждая саму вязку!

Универсальный зажим затягивается в горизонтальном положении.

Далее чтобы отрегулировать воздушный зазор, слегка откручиваете болтовое крепление и отводите разрядник в нужную сторону. Величину воздушного промежутка между концевым сферическим электродом и зажимом на СИП-3 прощу всего выставить по шаблону.

Этот зазор должен быть в следующих пределах:

  • для ВЛ-6-10кв - 40-60мм
  • для ВЛ-20кв - 50-70мм

Обратите внимание, что изгибать разрядник без ослабления его кронштейна запрещается. Иначе можете повредить внутренний армирующий элемент.

Разрядник закрепляется сверху на серьге подвесного изолятора.

Угол смещения элемента разрядника от оси провода - 30 градусов.

Выставив угол, кронштейн затягивается. Далее регулируете зазоры. Расстояние по горизонтали между юбкой верхнего изолятора и электродом разрядника должно быть примерно 30мм. Выставив его затягиваете все гайки.

Универсальный зажим здесь устанавливается максимально близко, вплотную к поддерживающему зажиму гирлянды.

При монтаже индикатора срабатывания соблюдайте его вертикальное расположение. В то же время он должен располагаться под сферическим электродом разрядника.

На проводе, напротив сферического наконечника, сразу за натяжным зажимом, закрепляется универсальный, либо индикатор срабатывания.

При этом он не должен быть на расстоянии ближе чем 50мм от края юбки изолятора.

Воздушный зазор до элемента самого РМК-20 здесь находится в более широких величинах - 50-100мм.

В процессе эксплуатации, высоковольтное оборудование может часто подвергаться перенапряжениям, возникновение которых обусловлено как внешними, так и внутренними факторами. К внешним относятся перенапряжения вызванные грозовыми разрядами, попадающими в конструкции электроустановок.

Внутренние перенапряжения, вызванные включениями или отключениями коммутационных аппаратов в распределительных устройствах энергосистем по другому называют коммутационными. Какой бы характер не носило перенапряжение, оно имеет отрицательное влияние на изоляционные характеристики оборудования, и надежность энергосистемы в целом.

Грозовые перенапряжения имеют длительность фронта импульса от 7 до 9 мкс с длительностью импульса до 22 мкс, коммутационные - длительность фронта импульса 30-100 мкс, с длительностью импульса до 200 мкс.

Как видно, эти два вида одного и того же явления имеют разные характеристики, следовательно, на изоляцию оборудования воздействую по-разному. Согласно регламентирующим документам, все электроустановки должны иметь защиту от перенапряжений.

В распределительных устройствах подстанций, для защиты высоковольтного электрооборудования применяют вентильные разрядники. Название вентильных они получили, за свое свойство быть «запертыми» при номинальных уровнях напряжений, и «открываться» при перенапряжении.

Таким образом, для защиты используется их способность «открываться» и «закрываться» подобно вентилю. Разрядники постоянно находятся в работе, они жестко присоединены к ошиновке защищаемого оборудования.

Находясь постоянно под номинальным напряжением, эти устройства имеют бесконечно большое сопротивление, и ток утечки измеряется в mA.

Если к разряднику приложить более высокое напряжение, которое может возникнуть в результате попадания грозы или включения/отключения длинной холостой линии, сопротивление становится ничтожно малым, и разрядник «открывается».

При этом он пропускает ток промышленной частоты и импульсный ток, возникший при перенапряжении, в землю, уберегая защищаемое оборудование, от импульса высокого напряжения. Именно поэтому, очень важно, чтобы разрядник имел надежное заземление и был установлен как можно ближе к защищаемому оборудованию. Это обусловлено уменьшением потенциального участка, куда могла бы попасть молния.

Разрядники, должны быть установлены без каких- либо коммутационных аппаратов. Это обусловлено тем, что излишние контактные соединения, могут нарушить электрическую связь разрядника и защищаемого оборудования и привести к его повреждению.


Типы разрядников . Для всех видов вентильных разрядников характерной особенностью является наличие искровых промежутков в совокупности с рабочими и шунтирующими резисторами. Все это помещается в фарфоровую рубашку и герметично заделывается во фланцевых соединениях с помощью армировочных растворов.

В процессе эксплуатации армировка должна быть постоянно покрыта эмалью или влагостойкой краской. Искровые промежутки изготавливаются из миканитовых шайб, их количество и соотношение с сопротивлением рабочего резистора определяется классом напряжения разрядника.

Рабочий резистор имеет нелинейное сопротивление, то есть его электрическое сопротивление резко уменьшается при поднятии напряжения до пробивного. В качестве основного материала рабочего сопротивления применяют вилитовые диски (в некоторых случаях - тервитовые). Данные материалы гигроскопичны; отсюда и вытекают жесткие требования к герметичности фарфоровой покрышки и армировочных швов.

Вентильные разрядники типа РВП , РВО , РВС , РВЭ , РВН состоят из последовательно включенных искровых промежутков и рабочего сопротивления. Способность таких разрядников гасить импульсный ток разряда ограничена способностью простых искровых промежутков гасить дугу. Поэтому, их применяют только для защиты от грозовых перенапряжений, длительность импульса которых меньше, чем у коммутационных.

Разрядники типа РВМ , РВМГ и РВРД отличаются от вышеперечисленных, магнитным гашением дуги. То есть дуга в искровом промежутке, под действием магнитного поля постоянных магнитов растягивается и гасится.

Кроме этого, в разрядниках РВМГ параллельно с искровым промежутком подключены резисторы, “берущих” на себя часть разряда. Такие разрядники защищают не только от грозовых, но и от кратковременных коммутационных перенапряжений.

В случаях, когда требуется защита от перенапряжений, вызванных коммутацией электрооборудования, например одностороннее отключение холостой линии напряжением 330 кВ и выше, применяют комбинированные магнитно-вентильные разрядники типа РВМК. Они состоят из нескольких модулей: основного, вентильного и искрового элемента.

Основной элемент состоит из искровых промежутков с и рабочих резисторов. Искровой элемент состоит из искровых промежутков, вентильный элемент только из резисторов. Разрядник РВМК-750 (1150) состоит из модулей. Каждый модуль содержит грозовую и коммутационную часть, блок шунтирующих сопротивлений и конденсаторов.

До настоящего момента на подстанциях применялись вентильные разрядники типа РВС , РВП , РВО , РВМГ , РВМК . Данные типы объединяет то, что в качестве нелинейного сопротивления в них использовали вилит и искровые промежутки.

В последнее время, их применение сокращается. На смену оборудованию, прослужившему более двух десятков лет на подстанциях отечественной энергосистемы, приходит новое, более совершенное оборудование – ограничители перенапряжений.


Сейчас в наше время разрядники распространены повсеместно. Поэтому вопросы о разрядниках стали актуальными. Но на большинстве сайтов информация очень сложная и непонятная. Эта статья очень проста в понимании. Из неё вы узнаете: что такое разрядник, принцип работы, устройство и виды разрядников.

В современной электронике довольно часто возникают сильные всплески напряжения. Перенапряжения могут сильно повлиять на электрические устройства, работающие при нормальных условиях, даже если они кратковременны. Причиной этого может стать плохая коммутация электрических цепей, слабая изоляция, резонансные помехи. Причины бывают, как и внутренние, так и внешние. Атмосферные разряды гроз могут стать внешней причиной перенапряжения.

Для предохранения от перенапряжения раньше применялись только громоотводы. Сейчас с высоким развитием современной электроники стали применяться такие замечательные устройства, как разрядники.

Что такое разрядник?

Разрядник- это устройство, которое защищает современную электронику от высоких скачков напряжения.

С высоким развитием промышленности удалось сделать разрядники экономичными и эффективными для использования в своих целях. Сейчас в наше время использование надежной изоляции весьма дорого и неэффективно, удобнее всего, конечно же, использовать разрядники.

В узком смысле разрядники являются защитными элементами электрических цепей, без которых часто бы портились электрические приборы, изоляция ЛЭП кабелей или проводов.

Устройство разрядника

Разрядник состоит из двух основных частей: электродов и дугогасительного устройства.

Устройство разрядника в зависимости от его вида бывает разным.

Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.

Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ).

На рисунке 2 показано устройство трубчатого разрядника. Он имеет прочный корпус 1, который способен выдержать большую температуру. Фланец 3, к нему присоединяется защищаемый участок электрической цепи, сам фланец является электродом разрядника. Электрод 2 подключается к заземлению. Он бывает двух видов: с регулировкой и без неё. Первый может менять размер искрового промежутка, тем самым изменяет величину пробивного напряжения.

Рис 2. Устройство трубчатого разрядника

Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.

Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.

Принцип работы разрядника

Принцип работы разрядника довольно прост, как и его устройство. При возникновение перенапряжения на электродах разрядника значительно возрастает напряжение. Если это напряжение станет больше напряжение пробоя, которое прописано в характеристике устройства, то возникнет пробой.

Между электродами проскочит искра. При этом снизится напряжение на его электродах, а в искровом промежутке ионизируется воздух. Разрядник станет пробиваться фазным напряжением и возникнет короткое замыкание.

Чтобы этого не произошло, в разряднике присутствует дугогасительное устройство. В зависимости от вида разрядника имеются различные виды дугогасительных устройств. Все разрядники подразделяются на несколько видов.

Ниже представлены основные виды разрядников.

Виды разрядников:

-Трубчатый (воздушный);
-Газовый;
-Вентильный:
-Магнитовентильный разрядник (РВМГ);
-Ограничитель перенапряжения нелинейный (ОПН);
-Трубчатые разрядники (воздушный)

Трубчатый разрядник

Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести температуру, пригодную для данного типа разрядников.

В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.

При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.

Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в разряднике имеется отверстие.

Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.

В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны. Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.

Более высокое пробивное напряжение у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.

Рис 3. Трубчатый разрядник

Вентильные разрядники.

Вентильный разрядник состоит из набора многократно повторяющихся искровых промежутков и нелинейных сопротивлений.

Принцип работы вентильного разрядника немного другой, чем у трубчатых разрядников. Во время работы электроды искрового промежутка снимают перенапряжения, а нелинейные сопротивления(резисторы) гасят дугу фазного напряжения.

Резисторы состоят из набора вилитовых дисков. Вилит – это запеченная смесь карбида кальция с жидким стеклом. По сравнению с трубчатыми и газовыми разрядниками, вентильные разрядники имеют более высокое напряжение пробоя.

Рис 4. Вентильный разрядник.

Магнитовентильный разрядник (РВМГ)

В отличие от устройства вентильного разрядника, в устройство магнитовентильного разрядника входит набор кольцевых магнитов.

Принцип работы магнитовентильного разрядника немного другой. При пробое фазным напряжением образуются дуга. Под воздействием магнитного поля магнитов дуга начинает вращаться, тем самым дуга гасится.

Рис 5. Магнитовентильный разрядник (РВМГ).

Ограничители перенапряжения нелинейные (ОПН).

Ограничители перенапряжения нелинейные не имеют электродов. Они состоят из набора нелинейных полупроводниковых сопротивлений – варисторов.

Варистор – это полупроводниковый резистор, который меняет сопротивление в зависимости от приложенного к нему напряжения. При возрастании напряжения, сопротивление варистора падает, поэтому он пропускает через себя электрический ток, тем самым снимая напряжение с защищаемого участка электрической цепи.

Варисторы в процессе работы очень сильно нагреваются, поэтому корпуса нелинейных ограничителей перенапряжения делают теплопроводными. Это позволяет отводить тепло.

Сама конструкция ОПН очень проста, поэтому это упрощает методы производства. Также у ОПН неплохие технические характеристики. Количество варисторов можно варьировать в зависимости от нужного пробивного напряжения нелинейного ограничителя перенапряжения.

Рис 6.Ограничитель перенапряжения нелинейный (ОПН).

В заключение хочу скачать, что помимо высоковольтных разрядников, в современной электронике появились низковольтные разрядники.

Это позволяет радиолюбителем широко использовать такие замечательные устройства.

Содержание:

В электрических сетях довольно часто наблюдается появление импульсных всплесков напряжения, вызванных различными причинами: коммутацией аппаратуры, атмосферными разрядами и прочими факторами. Несмотря на то, что такие перенапряжения носят кратковременный характер, они способны вызвать пробой изоляции с последующим коротким замыканием и разрушительными последствиями.

Одним из вариантов предотвращения негативных последствий могло бы стать использование более надежной изоляции, однако этот способ значительно увеличивает стоимость всего оборудования. Поэтому наиболее оптимальным вариантом стали разрядники, назначение которых зависит от области их применения. Основной функцией этих устройств является ограничение перенапряжений в электрических сетях и установках.

Общее устройство и принцип работы

Высокочастотное оборудование защищается не только молниеотводами, но и с помощью высоковольтных разрядников. Каждый из них состоит из двух основных частей - электродов и устройства для гашения дуги.

Один из электродов устанавливается на защищаемую цепь, а к другому подводится заземление. Между ними образуется пространство, известное как искровой промежуток. Когда достигает определенного значения, наступает пробой искрового промежутка между двумя электродами. За счет этого с защищаемого участка цепи . Основным техническим требованием, предъявляемым к разряднику, является определенный уровень гарантированной электрической прочности в условиях промышленной частоты. То есть, при нормальном режиме работы сети разрядник не должен пробиваться.

После пробоя в действие вступает дугогасительное устройство. Под действием импульса повышается ионизация искрового промежутка, в результате чего пробивается фазное напряжение, действующее в нормальном режиме. Оно приводит к короткому замыканию и срабатыванию защитных устройств на этом участке. Основной задачей дугогасительного устройства как раз и является скорейшее устранение замыкания, до срабатывания средств защиты.

Широкое распространение получили конструкции газовых разрядников. В их состав входит коаксиальный элемент с незначительным разрядным промежутком, и патрон с выводом на землю. В промежутке между ними выполняется установка газоразрядного элемента в форме таблетки, заключенного в стеклянную или керамическую оболочку и оборудованного электродами с каждой стороны. Внутреннее пространство оболочки заполнено газом - аргоном или неоном.

В случае перенапряжения происходит срабатывание защиты: под действием высокой температуры в разряднике наступает резкое падение сопротивления. После этого образуется дуговой разряд с напряжением около 10 вольт. Каждый такой разрядник оборудуется собственным заземлением, в противном случае он будет бесполезен.

Во всех газовых разрядниках центральная жила коаксиального кабеля и первый электрод соединяются между собой. Второй электрод соединяется с заземленным корпусом разрядника. Когда через устройство проходит высокий импульс с большим напряжением, происходит пробой разрядника и центральная жила кабеля в течение короткого времени шунтируется на землю. Наблюдается существенное падение значения тока, до состояния гашения дуги, после чего наступает размыкание, то есть прибор находится в непроводящем режиме.

Как правило, газоразрядная трубка считается одноразовой деталью разрядника, требующая замены после каждого срабатывания.

Технические характеристики газовых разрядников

Каждый газовый разрядник обладает специфическими электрическими свойствами и техническими характеристиками.

  • Номинальный импульсный ток разряда . Технические требования, предъявляемые к разряднику, определяют его способность выдерживать определенное значение импульсного тока. Отклонение от нормы имеет допустимые пределы, определяемые требованиями. Номинальное значение тока всегда указано в технической спецификации конкретного устройства.
  • Емкость и сопротивление изоляции . Данные параметры достигают, соответственно, свыше 10 гОм и менее 1 пФ, что делает такие устройства буквально незаменимыми при использовании в той или иной сети.
  • Статическое напряжение срабатывания . Данным параметром определяется тип разрядника, установленного в защитном устройстве. Его значение равно напряжению, достаточному для зажигания разрядника, при условии медленного возрастания величины напряжения.
  • Динамическое напряжение срабатывания . Эта величина является своеобразным пределом, когда наступает быстрый рост напряжения, при котором происходит срабатывание газового разрядника.

Виды разрядников

Трубчатый разрядник . Изготовлен в виде полихлорвиниловой трубки, предназначенной для гашения дуги. На каждом конце разрядника имеется по одному электроду. К одному электроду подводится заземление, а другой устанавливается на незначительном расстоянии от защищаемого участка.

Регулировка этого расстояния осуществляется в зависимости от величины напряжения на участке. В случае возникновения перенапряжения, возникает пробой сразу в двух местах - между обоими электродами и между разрядником и защищаемым участком. Действие пробоя приводит к возникновению в трубке интенсивной газогенерации, а продольное дутье, образующееся в выхлопном отверстии, вполне способно погасить электрическую дугу.

Вентильный разрядник . Конструкция включает две основные части: многократный искровой промежуток, состоящий из нескольких однократных элементов и рабочий резистор, представляющий собой последовательно набранные вилитовые диски. Оба основных элемента последовательно соединены между собой. Рабочий резистор обеспечивается герметичной защитой от внешней среды, в связи со свойствами вилита изменять свои характеристики при повышенной влажности. При появлении перенапряжения возникает пробой многократного искрового промежутка.

Рабочий резистор выполняет задачу снижения тока до такой величины, чтобы ее могли свободно погасить искровые промежутки. Сопротивление вилита является нелинейным, оно снижается по мере увеличения силы тока. Данное свойство дает возможность пропускать больше тока при уменьшении падения напряжения. Основным достоинством разрядников этого типа считается бесшумное срабатывание при отсутствии выбросов газа или пламени.

Магнитовентильный разрядник . В его состав входят несколько блоков, соединенных последовательно, с магнитными искровыми промежутками и вилитовыми дисками. В каждом блоке имеются единичные искровые промежутки, соединенные последовательно, и . Все элементы блока размещаются в фарфоровом цилиндре. Во время пробоя в единичных промежутках возникает дуга. На нее воздействует поле, создаваемое кольцевыми магнитами, заставляя вращаться с высокой скоростью. В результате, гашение дуги происходит гораздо быстрее, чем в других типах вентильных разрядников.

Ограничитель перенапряжения нелинейный . В этом разряднике отсутствуют искровые промежутки. Конструкция активной части ограничителя включает в себя последовательный набор . Именно на их свойствах основан принцип работы всего устройства, поскольку проводимость варисторов находится в зависимости от прилагаемого напряжения.